This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 653782.
Particle accelerators have over the last 90 years become powerful and widely used tools for industry, medicine and science. Today there are some 30,000 particle accelerators worldwide, all of them relying on long-proven and highly developed methods for increasing the energy of charged particles. The achievable energy of particles is often limited by practical boundaries on size and cost, for example, the available space in hospitals, the available university funding for accelerator-based light sources or the cost society as a whole can afford for science projects at the energy frontier.
A new type of accelerator that uses plasma wakefields promises gradients as high as some tens of billions of electron volts per meter—as much as 1,000 times more! This would allow much smaller accelerators that could be used for a wide range of fundamental and applied research applications.
The EuPRAXIA project started with a Design Study, which was funded under the EU Horizon 2020 programme, and culminated at the end of 2019 with the publication of the worldwide first Conceptual Design Report for a plasma accelerator facility. EuPRAXIA was then included in 2021 in the European Strategy Forum on Research Infrastructures (ESFRI) Roadmap, which identifies those research facilities of pan-European importance that correspond to the long-term needs of the European research communities.
For the Design Study 3 M€ of funding have been awarded to 16 laboratories and universities from 5 EU member states within the European Union’s Horizon 2020 programme. They were joined by 25 associated partners (as of December 2018) that made additional in-kind commitments.
The goal of this ambitious project was to produce a Conceptual Design Report for the worldwide first high energy plasma-based accelerator that can provide industrial beam quality and user areas. It is the important intermediate step between proof-of-principle experiments and ground-breaking, ultra-compact accelerators for science, industry, medicine or the energy frontier.
For more information see our leaflets and brochure or read the Conceptual Design Report.
Novel and small plasma accelerator compared to the FLASH accelerator at DESY. Credit: Heiner Müller-Elsner/DESY
Copyright © EuPRAXIA. All rights reserved. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 653782.